
Introduction to
R

Scott Nordstrom
(Scott.Nordstrom@Colorado.edu,

scottwatsonnordstrom@gmail.com)

CRDDS Summer Research
Data Bootcamp

May 17, 2023

Why use R?

• Less error-prone

• More efficient and faster

• Handle large, disparate datasets

• Reproducible
• Others can re-create your work

• You can re-create your work

• Reliable – should give same answer each time

https://posit.cloud/

R vs. RStudio

• R is the language, RStudio is software

• Analogy: if R was English, then RStudio
would be Microsoft Word

• Further torturing the analogy: R is
English, Rstudio is Microsoft Word, a .R
file (“script”) is a poem

RStudio: what’s going on here?

Editor window

Your script will open in here.
You can run whole scripts at once or just

parts of scripts.

Console window

You can run one or more commands
here.

Output will be printed here.

Let’s ignore these
for now.

Running R commands in the console

Note: you can scroll up to see old commands you’ve run, but otherwise, this won’t
necessarily save your work.

You can type things directly into the console and hit “Enter”

Arithmetic and logic in R

• R (and any programming language) can do simple arithmetic

• Try running the following commands in the console:

2 + 2
[1] 4

(2 + 2)^2

19^2 < 4^4

I’ll use this font throughout the workshop denote R code

The font is “Monaco” if you ever want to use it – it’s the same as the default in RStudio!

Keep your order of operations (PEMDAS) in mind!

This is what’s called a “logical statement” or a “boolean statement” –
like asking a question where the answer is TRUE or FALSE

This is “returned” by the command – running commands usually prints the output in the console.

Running R commands from the editor

Note: you can scroll up to see old commands you’ve run, but otherwise, this won’t
necessarily save your work.

You can type things directly into the console and hit “Enter”

You can also type commands into a script,
then highlight them and click “Run”
or highlight them and hit “ctrl + Enter”

“Running” code will send it to the console.

This will save your commands to re-run later, but remember, what
you type into a script won’t run less you run it!

How I (Scott) do it:

• Use the console for
trying stuff out

• Do what I want to
save in the editor

or “ctrl + enter/return”

“Hanging” (incomplete) commands

Common source of error is entering incomplete
commands.

When the console gets an incomplete command,
it waits for you to close the command before
running. The “+” is like an invitation to finish the
command.

You can fix this by finishing the command.

This happens commonly with arithmetic (e.g., +, /),
parentheses and brackets, and quotes.

Your command, in the editor

No >, line starts with +, blinking cursor,
command did not run.

Put in the rest of your command
here.

Now you’re good to enter
another command!

Variables: saving objects in memory

x <- 2 + 2

x
[1] 4
(x <- 2 + 2)
[1] 4

This will save the output (right of
the arrow) into memory under the
name x

Running just the variable name
itself will print its value

(useful to make sure the output is what
you expected it to be!)

Little known trick – wrapping this
statement in parentheses will print x to
the console too!

Useful rules for naming variables:
• Can’t include a space
• Can’t start with numbers
• Can include underscore (_) and

period (.)
• Names are case sensitive

Widely followed conventions:
• Use informative names!
• Start with lowercase letters
• camelCase or underscores for

names with multiple words
• E.g., myData or my_data – easier to

read than mydata

<- vs. =

• Both are “assignment” operators – they do the same thing

• <- has extra functionality in some high-level circumstances

• Most people use <- but I prefer to use =

• = is one keystroke while <- is three!

Image: hottake.life

You can plug variables into commands!

x <- 2 + 2

y <- 3 * 18

z <- y / x

Variables: when they stay and when they go

Declare variables and they stay in memory unless

• You overwrite them

• You remove them (rm())

• You restart RStudio (or the session)

See your variables with the command ls()

If you’re running a script and your R session crashes, all your variables will be
wiped out…

(but if you save your script, you can just run everything again!)

x = -20
x = 4*4
x

rm(x)
x

Comment with # – handy “notes to self”

If you include the # (pound sign) in a line,
R will ignore (not run) everything after it

2 + 2 + 2 # + 2
2 + 2 + # 2 + 2

These are great to include to “narrate” scripts
useful to someone else looking at your code,
but also useful to future you looking at your code!

What will this return?

What will happen with this?

Functions

Commands that have parentheses after them are functions.

Most functions have an input(s) and output.

The inputs are often called arguments.

(you can write your own functions!)

cos()

cos(0)

The “argument” goes here – it’s what
you want to take the cosine of

We usually say the function “returns”
some output – in this case it would return

“1”.paste(..., sep = ‘ ’)
This function will combine a vector of
characters into one object, with each
object in the vector separated by
whatever you give as the argument
“sep”

Characters you want to paste
together to here.

Getting help

? Followed by the name of a
function will pull up the
help/documentation page for
that function

? sqrt

Also provides examples!

Other data “types”

So far we have dealt only with
integers.

Unsurprisingly, R can also handle
non-integer numbers.

sqrt(.5)
[1] 0.7071068

Characters (“strings”):

“character” – wrapped in quotes (single
or double)

“two”

character.two <- “two”

typeof(character.two)

Without quotes – variable/object

With quotes – character

typeof() function to check the type of an object

“Logical” data
(TRUE/FALSE)

”Logical” (or “boolean”, “binary”)
data is a statement that is true or
false

5 > 4
[1] TRUE

five.four <- 5 > 4
five.four
[1] TRUE

Logicals get treated by R as 1/0:

TRUE: 1
FALSE: 0

sum(c(T, T, F, F, T))
[1] 3

This can come in handy!

Note: you can use T/F as shorthand
for TRUE/FALSE

(so avoid using T or F as variable
names!)

Moving back and forth between types

For each type, there is a function to convert into that type:

as.character(), as.numeric(), as.logical(), etc.

“5” + “4” # will return an error

as.numeric(“5”) + as.numeric(“4”)
[1] 9

Break!

😴😴

Store multiple objects in vectors

Make a vector with the command c()

brady_sb_wins <- c(2001, 2003, 2004, 2014, 2016, 2018, 2020)

brady_sb_wins <- c(’xxxvi’, ‘xxxviii’, ‘xxxix’, ‘xlix’, ‘li’, ‘liii’, ’lv’)

Michigan football legend, Tom Brady

Vector elements must all be of the same type.

ex_vec <- c(5, 6, ‘red’)
ex_vec
[1] "5" "6" "red" all elements were coerced

into characters

“Indexing” - picking out a slice or piece

What if I want to pick out just one (or a couple) observations?

For a vector: use brackets []

letters
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z”

letters[5]
[1] "e" The [5] here says “pick out just the fifth element”

Indexing a vector

Say now I want to pick out multiple elements (but not all of them)

Make a vector of the elements you want to pick out using c()
and stick that in brackets.

> letters[c(5, 22, 15, 12, 21, 20, 9, 15, 14)]
[1] "e" "v" "o" "l" "u" "t" "i" "o" "n”

Pick out elements, 5, 22, 15, …

Modifying vectors:Add to a vector:

usa.colors <- c(‘red’, ‘white’, ‘blue’)

azeri.colors <- c(usa.colors, ‘green’)

azeri.colors

[1] "red" "white" "blue" "green”

lebanese.colors <- azeri.colors[-3]

lebanese.colors

[1] "red" "white" "green”

“Minus” indices to
remove them
(you can do this with
multiple!, e.g., try –
c(3, 4))

squares <- c(1, 4, 9, 16, 25)

sqrt(squares[1])

sqrt(squares[2])

...

square.roots <- sqrt(squares)

square.roots

[1] 1 2 3 4 5

Many functions in R are written to be
“vectorized”, i.e., can perform operations on

each element independently

Data frames

• Rows: typically
correspond to one
“data point”

• Columns: can be
numbers or
characters

2D object meant for handling datasets (think: spreadsheets)

E.g., the “cars” data frame:

> cars
speed dist

1 4 2
2 4 10
3 7 4
4 7 22
5 8 16

Rows correspond to observations.

Columns named ”speed” and “dist” hold data
for one observation.

R has a lot of built-in features meant to work with data frames

Probably variables in your analysis!

Indexing a data frame

Data frames have rows and columns
You’ll still use brackets, but now there are two indices

[rows, columns]

cars[1,1]
[1] 4

cars[c(5, 7, 10), 2]
[1] 16 18 17

Picks out first row and first column

Picks out rows 5, 7, 10 and second column

Indexing a data frame

But remember…
R has a lot of built-in features meant to work with data frames

Pick out one column of a data frame
with the dollar sign ($)

cars$speed

cars$speed[5]

Pick out multiple columns using
character vectors

cars[,c(“dist”, “speed”)]

Note that indexing is order specific!
What did this do?

More fun with indexing!

You can index with variables you
have made!

fast_cars = c(47, 48, 49)

cars[fast_cars,]

speed dist

47 24 92

48 24 93

49 24 120

You can index with logical
statements!

cars[cars$speed < 15,]

What is this line doing?

== in logical statements – don’t confuse with
=

cars[cars$speed == 15,]
cars[cars$speed != 15,]

Exclamation mark negates logical statements

The dreaded error…

Error – some part of your code did not execute
• Error messages – these are informative! Read them!
• You can also google error messages!

“Debugging” – fixing “bugs” in your code

Note – just because you don’t get an error message doesn’t mean your
code runs as you want it!

All of that is very cool.

How do I analyze my own data though…?

Directories – where am I?

R sessions are always “parked” in some directory on your computer.

Where it is parked is called your “working directory.”

Check your working directory: getwd()

Set your working directory: setwd()

Directories (and file names) should be in quotes!

“/Users/scottnordstrom/”

/Users/scottnordstrom/

Reading in files

read.csv()

myData <- read.csv(filename)

CSV = “comma separated value” – R can not read in .xsl or .xslx files (unless
you install extra packages)

You can always read in the full path to your file

If your csv is in a subdirectory of your working directory, you can put the path to the file

If your csv is in your working directory, you can just put the filename

read.csv(“/Users/scottnordstrom/Teaching/r_crdds_2023-05/wos/ClimateAndArt1.csv”)

setwd(“/Users/scottnordstrom/Teaching/r_crdds_2023-05/wos”)

read.csv(“ClimateAndArt1.csv”)

setwd(“/Users/scottnordstrom/Teaching/r_crdds_2023-05”)

read.csv(“wos/ClimateAndArt1.csv”)

Read in the first ClimateAndArt CSV

(remember to set your working directory first)

climateArt1 <- read.csv(‘ClimateAndArt_01.csv’)

Inspecting the data frame:
dim(climateArt1) will tell us how many rows and columns

names(climateArt1) will show names of each column

Other useful functions:
head(climateArt1) will print out first several rows (you can guess what tail() does)

str(climateArt1) will show us the type stored in each column

Exploring the data frame

What publication types are there in the data frame?

climateArt1$Publication.type (this will print the whole thing!)

unique(climateArt1$Publication.type)

How many of each? – table()
table(climateArt1$Publication.type)

Handling missing data

What is the earliest publication in our dataset?

min(climateArt1$Publication.Year)
[1] NA

NAs can appear for several reasons, including empty cells in a CSV.

For character columns, may appear as empty string ('')

Handling missing data

is.na(climateArt1$Publication.Year)

[1] FALSE FALSE FALSE FALSE FALSE FALSE ...

sum(is.na(climateArt1$Publication.Year))

[1] 13

which(is.na(climateArt1$Publication.Year))

[1] 78 97 229 284 295 361 449 457 549 599 608 645 824

is.na() – function that returns TRUE in positions with
NA, FALSE otherwise

Remember – logicals are really
just 1s and 0s – here we’re
counting the 1s!

which() will tell you which indices
in a logical vector return TRUE

Removing missing data

!is.na(climateArt1$Publication.Date) will return TRUE for entries that are not NA

climateArt1.subs <- climateArt1[!is.na(climateArt1$Publication.Date,]

For missing character data:

!(climateArt1$Abstract == ‘’) or !(climateArt1$Abstract %in% ‘’)

Picks out only the rows with non-NA dates

! Before a logical will negate it, i.e., TRUE to FALSE and FALSE to TRUE

Combining data frames with rbind()

rbind() will combine data frames into one. (’r’ for ‘row’)

Requires all data frames to have identical column names

climateArt <- rbind(
read.csv(…),
read.csv(…),
...

)

There are other, sleeker ways to do this – if you are curious, ask me!

Can you guess what cbind() does?

Can you guess what must be true for
cbind() to work?

Tidy data: working with the tidyverse

Developers have made handy packages for handling data-types.

These are called the tidyverse.

We will get started with the tidyverse after the break.

For now, make sure the following lines work for you:
library(dplyr)
library(tidyr)
library(ggplot2)

Break!

😵😵

On packages (“libraries”)

”Base” R is a collection of functions
that run on their own.

But sometimes, people figure out
ways to do things better, faster,
more neatly, etc.

They bundle this code into external
”packages” that you can install
and use.

Install packges with
install.packages()

install.packages(‘nic’)

You only need to install packages
once (unless you update your
version of R)

This is a package with “nature inspired color palettes”

Don’t include install.packages() in a script! It will just re-install
the package, wasting time.

Manipulating and preparing data with the
tidyverse

• Tidyverse is a collection of
packages for manipulating data
(and other things)

• “Base” R: confusing, inconsistent
hodgepodge of functions

• Tidyverse (ideally): more consistent,
coherent structure/organization

Consistent structure means a little bit of knowledge goes a long way

Do I need to use the tidyverse?

No.
Much of what the tidyverse is capable

of can be done in base R.

But, it might be slower, messier, more
complicated, etc.

Tidyverse pros: powerful, widely used,
common syntax means learning new things is
easier once you’ve seen enough

Tidyverse cons: learning curve, occasionally

changing (old code might “break”)

Getting started with tidyverse

To make the functions in a package accessible, use the library() command
to load the package.

Today, we’ll use these tidyverse packages: tidyr, dplyr, ggplot2

library(dplyr)
library(tidyr)
library(ggplot2)

It generally is a good idea to include calls to library() in your
scripts, usually at the beginning.

You can also say library(tidyverse), which will load all of the
tidyverse packages at once.

Fundamental tidyverse concept: pipe

Pipe: %>%

object %>% function()

Like saying “take object and then put it into function()”

More formally: the object on the left-hand side gets “piped” in as the first argument in function()

object %>% function(argument2, argument 3)

If more than one argument to function(), pass those in after

Simple pipe examples

5 %>% sqrt()

mtcars$cyl %>% as.character()

mtcars %>%
nrow() %>%
sqrt()

sqrt(5)

as.character(mtcars$cyl)

n <- nrow(mtcars)
sqrt(n)

sqrt(nrow(mtcars))

No temporary objects

Easy to read

Makes unnecessary variables

Harder to read

or

Piping usefulness: stringing together operations

Neatly, cleanly perform multiple operations on data frame

No temporary objects made

Easy to read (if you know what you’re looking for)

Another analogy for piping: cake baking

Cake recipe:

• Take flour
• Add eggs, oil, water
• Mix with spoon for two minutes
• Bake at 350 degrees F for 35

minutes
• Let cool

Base R:

dough <- add(flour, oil, water)

batter <- mix(dough, utensil =
‘spoon’, time = 2)

cake <- bake(batter, temp = 350,
unit = ‘F’, time = 35)

cake <- let_cool(cake)

dough, batter are made once, never used again

🎂🎂

Another analogy for piping: cake baking

Cake recipe:

• Take flour
• Add eggs, oil, water
• Mix with spoon for two minutes
• Bake at 350 degrees F for 35

minutes
• Let cool

Base R:

cake <- bake(mix(add(flour, oil, water),

utensil = ‘spoon’, time = 2)

temp = 350, unit = ‘F’,

time = 35)

)

cake <- let_cool(cake)

this really hard to read!

🎂🎂

Another analogy for piping: cake baking

Cake recipe:

• Take flour
• Add eggs, oil, water
• Mix with spoon for two minutes
• Bake at 350 degrees F for 35

minutes
• Let cool

Piping in tidyverse:

flour %>%

add(eggs, oil, water) %>%

mix(utensil = ‘spoon’, time = 20) %>%

bake(temp = 350, unit = ‘F’, time = 35) %>%

let_cool()

🎂🎂

Tidyverse functions: data is first argument

• mutate(data, columns): add a
new column(s) to a data frame

• select(data, columns): selects
column(s) from data frame

mutate(cars, speed.sq = speed^2)

select(mtcars, mpg, wt, vs, am)

mtcars %>%
select(mpg, wt, vs, am)

mtcars %>%
mutate(wtkg = wt*907.185) %>%
select(mpg, wt.kg)

Add a column for weight in kg, then give me only mpg
and weight in kilograms columns

More tidyverse functions

• filter(data, logical): return only
rows matching the logical

• rename(data,
newname = oldname,
...

): selects column(s) from data
frame

filter(cars, speed > 20)

mtcars %>%

rename(

transmission = am,

engine = vs

)

Renames the old am column to transmission, renames
old vs column to engine

Grouping with tidyverse

dplyr functions allow you to perform
operations on groups of data

group_by(variables) to group
summarise(), mutate(), etc. to
operate

Base R equivalent is aggregate()

mtcars %>%

group_by(am, vs) %>%

summarise(

mean.mpg = mean(mpg),

sample.size = n(),

se.mpg = sd(mpg) / sqrt(sample.size)

)

am vs mean.mpg sample.size se.mpg

1 0 0 15.0 12 0.801

2 0 1 20.7 7 0.934

3 1 0 19.8 6 1.64

4 1 1 28.4 7 1.80

High quality plots with ggplot

Base R does have plotting
capabilities (with plot(), hist(), etc.)

However, customizing these plots
can be difficult.

Many people instead use the
package ggplot2.

Load the ggplot library with

library(ggplot2)

The syntax of ggplot

All ggplot plots start with a call to the ggplot() function

As with much of the tidyverse, the first argument is the data frame you
want to plot.

ggplot(data = artClimate)

artClimate %>% ggplot()
Either of these will work!

The syntax of ggplot

Add features to your ggplot object with the plus sign (+)

Most of these features will be geometric (lines, points, shapes).

Functions to do this start with geom_, e.g.,

• geom_point()
• geom_line()
• geom_histogram()

aes() – you need this to extract features for your plots!

Columns from your data frame that
specify features of the plot.

Usual suspects:
x
y
colour
shape
...

One or both
of these is
often used in
aes()!

geom_line(
aes(

x = Generation,
y = Growth.rate,
colour = Density.dependence

)
)

X, Y, and color of date that forms my line come from these columns

aes() goes inside
geom_line() (not on its own)
because it affects our lines

Example with our dataset:

Looking at citation – do
longer journal articles get
cited more?

Let’s first subset the journal
articles.

climateArtArticles <– climateArt %>%

Select only journal articles

filter(Publication.Type == ‘J’) %>%

Remove retractions, pre-prints, etc.

filter(Document.Type == ‘Article’)

nrow(climateArtArticles)

[1] 8994

To plot citations over time:

climateArtArticles %>%
ggplot() +
geom_point(

aes(x = Number.of.Pages,
y = Cited.Reference.Count)

)

x and y inside aes() tell us
what the x and y

coordinates of our points
should be!

Interesting! Points are hard to see though…

alpha (transparency) – make it low and apply
it to all points

climateArtArticles %>%
ggplot() +
geom_point(

aes(x = Number.of.Pages,
y = Cited.Reference.Count),
alpha = 0.1

) Outside of aes() because
we don’t want alpha to
depend on any column!

Thicker = more points

Does this vary by year? Use facet_wrap() to build sub-plots,
broken out according to one of your

columns

climateArts %>%
ggplot() +
geom_point(

aes(
x = Number.of.Pages,
y = Cited.Reference.Count

)
) +
facet_wrap(~ Publication.Year)

Makes one subplot
(facet) for each year

More ggplot functions available at…

https://ggplot2.tidyverse.org/

	Introduction to R�
	Why use R?
	R vs. RStudio
	RStudio: what’s going on here?
	Running R commands in the console
	Arithmetic and logic in R
	Running R commands from the editor
	“Hanging” (incomplete) commands
	Variables: saving objects in memory
	<- vs. =
	You can plug variables into commands!
	Variables: when they stay and when they go	
	Comment with # – handy “notes to self”
	Functions
	Getting help
	Other data “types”
	“Logical” data (TRUE/FALSE)
	Moving back and forth between types
	Break!
	Store multiple objects in vectors
	“Indexing” - picking out a slice or piece
	Indexing a vector
	Modifying vectors:
	Data frames
	Indexing a data frame
	Indexing a data frame
	More fun with indexing!
	The dreaded error…
	All of that is very cool.��How do I analyze my own data though…?
	Directories – where am I?
	Reading in files
	Read in the first ClimateAndArt CSV
	Exploring the data frame
	Handling missing data
	Handling missing data
	Removing missing data
	Combining data frames with rbind()
	Tidy data: working with the tidyverse
	Break!
	On packages (“libraries”)
	Manipulating and preparing data with the tidyverse
	Do I need to use the tidyverse?
	Getting started with tidyverse
	Fundamental tidyverse concept: pipe
	Simple pipe examples
	Piping usefulness: stringing together operations
	Another analogy for piping: cake baking
	Another analogy for piping: cake baking
	Another analogy for piping: cake baking
	Tidyverse functions: data is first argument
	More tidyverse functions
	Grouping with tidyverse
	High quality plots with ggplot
	The syntax of ggplot
	The syntax of ggplot
	aes() – you need this to extract features for your plots!
	Example with our dataset:
	To plot citations over time:
	Interesting! Points are hard to see though…
	alpha (transparency) – make it low and apply it to all points
	Thicker = more points
	Does this vary by year?
	Slide Number 63
	More ggplot functions available at…

