
Git and GitHub In-depth

Working with Git and GitHub
Mohal Khandelwal

• Research Computing
• Website: www.rc.colorado.edu
• Helpdesk: rc-help@colorado.edu

Matthew Murray
• Center for Research Data &

Digital Scholarship (University
Libraries)

• Website: colorado.edu/crdds/
• Helpdesk: crdds@colorado.edu

2

http://www.rc.colorado.edu/
mailto:rc-help@colorado.edu
http://www.colorado.edu/crdds/

What is version control?

Version control is the practice of tracking and managing
changes to files.

• Why do I need it?
• Revert to various states of files

• You can think of this as a backup
• Allows you to modify items without harming the original copy
• Not limited to code

• Can be used for documents, images, etc.

What is version control?

• Google Docs includes
"Version History"

• This allows you to see
what changes were
made, when those
changes happened,
and who made them

• You can also revert to
a previous version of
your file

Additional benefits of version control
• Using version control provides

• Clear tracking of the repo’s history
• Management and view of different branches (work)
• Collaboration through merging of branches

Main

Images: nobledesktop.com

Branching & Merging

Jennifer Gilbert. https://imgur.com/git-branching-YG8In8X

Git vs GitHub

• Git: version control system
• the actual software

• GitHub
• cloud-based storage website

What is Git?

• Git is version control software, created by Linus Torvalds, the
same person who created the Linux operating system.

• Monitor files on your computer and tracks changes made to
them over time

• Uses the command line

https://www.reddit.com/r/zines/comments/1miy3bs/we_made_a_zine_from_our_git_history/

Why is it called “Git”?

• Linus Torvalds: "I'm an
egotistical bastard, and I
name all my projects after
myself. First 'Linux', now
'Git’”.

• Git: “A silly, incompetent,
stupid or annoying person
(usually a man).”
(Wikitionary)

What is GitHub?

• GitHub is a Microsoft subsidiary that offers cloud hosting for Git repositories
• Provides a GUI (Graphical User Interface) for Git

• Most (but not all) features are available in the GitHub Desktop client
• Allows for easy collaboration and sharing

• Issue queues for bugs and features, pull requests, and more
• GitHub basic is free (up to 5GB of storage)

• Hosts both open and private repositories
• GitHub Enterprise (free for CU affiliates)

• Includes cloud-based development environments
• https://oit.colorado.edu/services/business-services/github-enterprise

https://oit.colorado.edu/services/business-services/github-enterprise

Alternatives to…

• Git (version control)
• Apache Subversion (SVN)
• Mercurial SCM
• CVS (Concurrent Versions System)

• GitHub (hosting)
• Codeberg
• GitLab
• Forgejo
• Bitbucket

Presenter Notes
Presentation Notes
We’re going to stick to Git
industry standard
widely known
most resources

When not to use GitHub
• When you are looking for long-term preservation

• There’s no guarantee Microsoft will keep GitHub around forever
• Lots of source-code-hosting platforms no longer exist
• Thousands of URLs in research articles no longer work as they point to code

hosted by defunct services
• When you want your code to be cited

• Zenodo is an Open Access repository that can be linked to GitHub
• Allows you to archive a specific release of public GitHub projects
• Creates a DOI for the archive that you can use in citations

https://zenodo.org/

Ways to interact with GitHub

• The website
• GitHub Desktop
• Using Git and the command line

Website

• Create and
manage projects

• Upload and
download files

• Write
documentation

GitHub Desktop

• Create, clone, and
fork projects

• Commit changes and
submit contributions

• Many people who
use Git frequently
prefer to use the
command line

• Other graphical Git
interfaces exist

Be careful where you put your
GitHub directory

• Microsoft OneDrive uploads a lot of stuff to the cloud, which
you don’t always want

Getting Started with Git

Getting Git on your local machine

Many systems have Git installed; however, you may need to
download it on your local machine:
• See https://git-scm.com/book/en/v2/Getting-Started-Installing-Git for

more information on installing Git

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Linking Git to GitHub
• Once downloaded, we can then configure Git with our GitHub username

and email via the command line. This allows us to interact with our
GitHub more easily.
• First, set your username. For example, if my GitHub username is gh-user, then I

would do the following:

$ git config --global user.name “gh-user”

• Now, set your email. For example, if my email for GitHub is gh-user@gmail.com,
then I would do the following:

$ git config --global user.email “gh-user@gmail.com”

• Confirm Git has been configured (should show your entered info)
$ git config --list

Personal Access Token
• Allows you to verify your identity with GitHub
• For more information, see

https://docs.github.com/en/authentication/keeping-your-account-
and-data-secure/managing-your-personal-access-tokens

• Downside is that you need to enter your username and then the
Personal Access Token as your password for events such as:
• Any interaction with a private repo
• Pushing to a public repo

• There are ways to store your username and token, but these
require third-party software

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens

SSH Keys

• Alternative way to verify your identity with GitHub

• For more information see:
https://docs.github.com/en/authentication/connecting-to-github-
with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
• Be sure to select the proper Operating System when using the link

• Setup is more involved, but makes it so that you never have to
enter your username and token when interacting with a private
repo or pushing to a public repo

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

Getting Started with Git
(local)

Hands on tutorial

Goal: Create a simple project that contains a markdown file

First let’s create a new directory for our project:

$ mkdir git_work
$ cd git_work
$ mkdir git-tutorial
$ cd git-tutotial

Git Repository (Repo)

A Git repository tracks and saves the history of all changes
made.

• All of this information is stored in “.git”, which is the repository folder

We can make a directory (folder) a Git repo using “git init”

Git Init

In your “git-tutorial” directory run
$ git init

• Git creates the "hidden" directory called “.git”
$ ls –a

• Your directory is now a repo!
• Git is now ready to to be used
• Allows us to tell Git what items to watch

Create the main branch
Now that we have a repo, we can create branches. Branches are a
version of the repository.
• It is customary to name the primary branch “main”
• This can be done as follows (after an init)

$ git checkout –b main
• You can switch between branches

$ git checkout <branch-name>
• To list branches and see what branch you are on use

$ git branch

Main

Let’s add a file!

It is customary to add a README.md
• Description of repo and any helpful information

To add a README.md, in “git-tutorial” create and edit the file
using nano (or an editor of your choice)

$ nano README.md

• Add anything you would like!
• Be sure to save the file when you exit.

Best Practices: Documentation

• Include documentation with your project in GitHub so that others (and you)
know what your project is and how it should be used.

• A README.md (markdown) file can be included in your GitHub project and will
display on the front page

• What to include in a README:
• What your project does
• How people can use it
• Who you are and how to contact you
• License information

• Lots of examples and templates available
• We can provide feedback on documentation

Git does not know about README.md yet!!

Areas of Git Workflow

Working Area

o Items that you are
currently working on

o Are not tracked by
Git!

o Exists locally

Staging Area

o When Git starts tracking
and saving your work

o Exists locally
o Items are added to this

area by using “git add”

GitHub

o Exists locally and on
GitHub!

o Items are added to this
area using “git push”

Snapshot Area

o All staged items are
captured

o Version of the repo
o Exists locally
o Items are added to this

area by using “git
commit”

Git Status

The git status command displays the state of the working and staging
area.

Let’s see what area README.md is in
$ git status

• We see it is an untracked file, so it is in the working area

What if you don’t want Git
to track something?

.gitignore

We can add a file named “.gitignore” to our repo
• Specifies what items (files, directories, etc.) should never be

tracked

Let’s create a file to ignore!
$ echo "Super secret stuff" > confidential_data.txt

Add “.gitignore” to “git-tutorial” and put “confidential_data.txt” in it
$ echo confidential_data.txt > .gitignore

Let’s add our files to the
staging area now!

Git Add
The git add command adds a change in the working area to
the staging area

Let’s add our README.md to the staging area
$ git add README.md

or add everything in the current directory
$ git add .

• Anytime a change is made, you need to do a git add (to track them)

Working Area Staging Area GitHub
git add

Snapshot Area

Git Commit
The git commit command captures a snapshot of all staged items
• Commits can be thought of as a version of the repo
• Commits should be accompanied with a brief message

Let’s commit our staged item!
$ git commit -m ‘Create repo, add README.md, add .gitignore’
$ git status

Working Area Staging Area GitHub
git add

Snapshot Area
git commit

Common practice – add, commit

• git add
• Can be performed as much as you want
• Doesn’t need to be done after every change

• git commit
• Always include a comment!!
• Bundle common staged items together
• Try not to put too many things in a commit

Git Log

The command git log lists the commits made in that repository
• Lists the most recent commits first

$ git log

All changes and files are only locally stored right now!

To GitHub we go!

GitHub

When you first create a repo locally, you will need to setup a
new repository on GitHub too
• Go to https://github.com
• Sign in
• Click on “Create New Repository” or just “New”

https://github.com

Create Repo in GitHub

• Name your repo, I chose “git-tutorial”
• Don’t add a README or a .gitignore
• Click “Create repository”
• We have set everything up in the previous slides, we only

need to copy the ssh link!

Linking local repo to GitHub repo

Git Remote
• Used to identify the remote (e.g. GitHub) repos are linked to your local

repo
• Used to link remote repos to your local repo
To view currently linked remote repos:
$ git remote -v

To link our remote repository:
• When using an SSH key do:

$ git remote add origin git@github.com:<user>/git-tutorial.git

• When using a Personal Access Token do:
$ git remote add origin https://github.com/<user>/git-tutorial.git

Sending local changes to GitHub

Git Push
Uploads local repository content to a remote repository
• Pushing is how you transfer commits from your local repo to a

remote repo
$ git push <name of remote repo> <branch>
$ git push origin main

Working Area Staging Area GitHub
git add

Snapshot Area
git commit git push

GitHub
• Go back to GitHub and refresh your page

• should see the files we have added (and not the ones we’ve ignored)

• Some cool features!
• look at our commits
• directly edit/commit in the browser

• Let’s do that! Let’s something and commit it on GitHub
• But now our remote repo is one commit ahead of our local one…

Git Fetch & Merge

• Git fetch retrieves the changes from the remote repo
$ git fetch

• Git merge combines two branches
$ git merge origin/main

There’s an easier way!

Git Pull

Git pull combines the fetch and merge commands
$ git pull <name of remote repo> <branch>
$ git pull origin main

IMPORTANT!
• Make sure no commits have been done on local branch
• It is fine to have staged items (git add)
• ALWAYS do git pull before any commits!

Advanced topic:
Collaboration

Central Repo
(upstream)

GitHub Forks

Your Forked
Repo

Fork

Main Branch Your Main Branch

Pull Request (PR)

GitHub Forks
• Improves collaboration

• Don’t have to worry about disturbing the upstream repo
• Improves transparency through pull requests

• Go ahead and Fork my repo:
• Go to https://github.com/mohal-k/git-tutorial
• Click “Fork” button
• Click “Create fork”

• Creates your own version of my repo under your GitHub

https://github.com/mohal-k/git-tutorial

Git Clone
• Git clone makes a clone (or copy) of a remote repo in a new directory, at

another location.
$ git clone <url> <optional new name>

• Easy way to grab third-party code, or pre-existing code you might need to work on

• Cloning when you have SSH keys (be sure to make “git_work_cloned”):

$ cd git_work_cloned
$ git clone git@github.com:<user>/git-tutorial.git

• Cloning when you are using Personal Access Tokens (be sure to make
“git_work_cloned”):
$ cd git_work_cloned
$ git clone https://github.com/user>/git-tutorial.git

GitHub Issues

• Allows you to discuss the project
• Point out issues, request features, ask for help
• Useful place to see past user discussion

GitHub Issues

• Include as much detail as
possible
• Version of software
• Operating system

• Provide a simple minimal
example, if possible

• If a feature request
• Outline possible implementation
• Highlight its value

Pull Requests (PRs)

• A request that an upstream repo pull your branch into their
branch

• Starting a PR does not automatically merge changes
• Notifies maintainers of upstream repo
• Allows maintainers to review your changes

• Discussion of changes
• Requested additional changes

• Maintainers of upstream repo merge in the changes

PR steps
1. Fork upstream repo
2. Clone the forked repo
3. Connect forked and cloned repo to upstream repo. Ex. using SSH keys:

4. Create a new branch specific to your change

5. Make your changes on this branch
6. Perform a git add, commit, and push to origin
7. Create a PR from GitHub

$ git checkout –b <new-branch> <branch-to-copy>

$ git remote add upstream git@github.com:dev-mohalkh/git-tutorial.git

Creating a PR

• After you push your changes to the forked repo, you can click
the pop-up “Compare & pull request” on GitHub
• Will disappear after some time

Creating a PR

• After you push your changes to the forked repo
1. Switch to your new branch
2. Click the drop-down arrow next to “Contribute”
3. Click “Open pull request”

• Will NOT disappear!

Creating a PR

Upstream repo
and branch we
want to merge
into

Our forked repo and branch
with our changes

Pull Requests – Best Practice
• Create a new feature branch of forked repo
• When submitting a PR

• Provide a short descriptive title
• In comment section

• Link to any current issue
• Describe what the PR does and reasons for it

• Draft pull requests
• PR is a work in progress
• Can be used for discussion

Merging

• When doing a “git pull” you are merging in changes
• This process can be done manually
• When collaborating, multiple individuals can be working on the

same item
• Conflicts can happen!

• One needs to manually resolve conflicts
• Fantastic tutorial on merging:
https://www.atlassian.com/git/tutorials/using-branches/git-merge

https://www.atlassian.com/git/tutorials/using-branches/git-merge

Screenshot of conflict merging?

Help! I’m stuck, where do I go?

● Trainings with Center for Research Data and Digital Scholarship (CRDDS):
https://www.colorado.edu/crdds/

● Software Carpentries tutorial: https://swcarpentry.github.io/git-novice/index.html

● GitHub Student Developer Pack: https://education.github.com/pack

● Helpdesk: rc-help@colorado.edu

67

https://www.colorado.edu/crdds/
https://swcarpentry.github.io/git-novice/index.html
https://education.github.com/pack
mailto:rc-help@colorado.edu

Survey and feedback

Survey: http://tinyurl.com/curc-survey18

Slides: https://github.com/ResearchComputing/git_github_in_depth_short_course

68

http://tinyurl.com/curc-survey18
https://github.com/ResearchComputing/git_github_in_depth_short_course

	Slide Number 1
	Working with Git and GitHub
	What is version control?
	What is version control?
	Additional benefits of version control
	Branching & Merging
	Git vs GitHub
	What is Git?
	Slide Number 9
	Why is it called “Git”?
	What is GitHub?
	Alternatives to…
	When not to use GitHub
	Slide Number 14
	Slide Number 15
	Ways to interact with GitHub
	Website
	GitHub Desktop
	Be careful where you put your GitHub directory
	Getting Started with Git
	Getting Git on your local machine
	Linking Git to GitHub
	Personal Access Token
	SSH Keys
	Getting Started with Git
(local)
	Hands on tutorial
	Git Repository (Repo)
	Git Init
	Create the main branch
	Let’s add a file!
	Best Practices: Documentation
	Slide Number 32
	Areas of Git Workflow
	Git Status
	Slide Number 35
	.gitignore
	Slide Number 37
	Git Add
	Git Commit
	Common practice – add, commit
	Git Log
	Slide Number 42
	To GitHub we go!
	GitHub
	Create Repo in GitHub
	Linking local repo to GitHub repo
	Git Remote

	Sending local changes to GitHub
	Git Push
	GitHub
	Git Fetch & Merge
	Git Pull
	Advanced topic:�Collaboration
	GitHub Forks
	GitHub Forks
	Git Clone
	GitHub Issues
	GitHub Issues
	Pull Requests (PRs)
	PR steps
	Creating a PR
	Creating a PR
	Creating a PR
	Pull Requests – Best Practice
	Merging
	Screenshot of conflict merging?
	Help! I’m stuck, where do I go?
	Survey and feedback

