Fixing Your Files: A Research Data Management Primer

Aditya Ranganath

Data Librarian

aditya.ranganath@colorado.edu

What we'll talk about

- What is research data?
- Data Management vs. Data Management Plans
- Data Storage & Access
- Backups & Versioning
- Documentation
- File Names & Structures
- File Formats & Units of Measurement
- Data Management Plans
- Tools

You can't do everything

- I'm going to talk about a lot of different things
- Doing anything is good
- Pick one or two things and concentrate on doing them well

What is Research Data?

- "Recorded factual material commonly accepted in the scientific community as necessary to validate research findings" (US Office of Management and Budget)
 - Primary / Secondary
 - Qualitative / Quantitative
 - Experimental / Observational

Data Management vs.

Data Management Plans

(and Data Management and Sharing Plans)

Data Management vs DMPs

- Data management refers to the things researchers do to stay organized as they create, collect, describe, store, and work with research data
- Data Management Plans (DMPs) are a written description of the data management strategy for a particular research project, and how the data will be utilized and stored during and after a project.

Data Management vs DMPs

- Data management is what you do.
- Data Management Plans are where you write about what you're going to do. (Usually because a grant requires one.)

Why is data management important?

- Protects data from loss
- Saves you time
- You can find your data when you need it
- Helps new members of research teams understand processes faster
- Facilitates reproducibility
- Improves the quality of published data
- Keep sensitive data secure

Research Lifecycle

What Data Management isn't

- Data management is <u>not</u> data sharing
- You can manage your data without sharing it
- You can share your data without managing it
 - (please don't do this)

Data Storage & Access

Data Storage & Access

- Where will the data be stored?
 - When the data is being collected
 - When the data is being analyzed
 - After the project is over
- Who can access the data?
 - How can they access it?
 - Is there sensitive or confidential data?
 - What security measures are in place to protect the data?

Things to think about

- Who's paying for data storage?
- How long will you have access to this storage?
 - What happens when you graduate?

I lost several years of DnD world-building with the google email change, looking for help

3 votes · 8 comments

Has anyone had any success trying to have their Google school account recovered? Or am I screwed?

2 votes · 6 comments

Content/Data requirements

Content/ Requirement	OneDrive	Teams	SharePoint*	UCB Files	PetaLibrary	Google**
User files that are stored or shared with others for collaboration	~	×	×	×	×	×
Data shared for unit or department use	×	~	~	~	×	×
Research data (less than a TB)	✓	✓	✓	~	✓	×

https://oit.colorado.edu/services/file-transfer-storage-infrastructure

Big Data

- Larger data sets means increased complexity!
- It's harder to store and provide access to data when you're working with terabytes or petabytes of data

Backups & Versioning

Why backup your data?

- Technology failure
- Natural disasters
- Theft
- Human error
- Rogue Als

All of your data has been deleted.

Pod 042

All of your data has been deleted

3-2-1 Rule

- Three copies
 - One primary and two backups
- Two formats/media
 - e.g. External hard drive & cloud storage
- One off-site
 - Where is your cloud storage located?

3-2-1 Rule

- Not always feasible
 - Big data (terabytes or petabytes of data)
 - Frequently changing data
 - Data collected in places with terrible internet
- Ask yourself:
 - How often do you need to backup your data?
 - If you lost a specific piece of data could your research project continue?

USBs are Not Data Storage

You will lose them

Versioning

- Versioning is when you save specific versions of your files
- Some software (Git!) does this automatically
- Can be as basic as having "raw" and "cleaned" versions
- Be consistent in giving version numbers

Git/GitHub

- Can be used for anything (not just code!)
- Manage and view of different branches
- Collaboration through merging of branches
- Tracks history

Deleting Files

- Deleting files is also an important part of data management
- I have a monthly calendar reminder to spend some time and delete files I no longer need

Documenting Data

What is Documentation?

- Documentation is capturing your research process (from data collection through analysis)
- Includes the Five Ws (and One H)
 - What was done, Who did it, When it happened, Where it happened, Why it was done, and How it was done

Why is Documentation Important?

- You can keep track of what still needs to be done
- Your future self will thank you for writing down what you did
- Allows others to understand your process and replicate your work

Examples of Documentation

- Data Dictionaries & Codebooks
 - Contain a description of elements in a dataset, including names, definitions, acronyms, and other relevant information.
- README files
 - A plain text file that provides information and instructions about a project, including its purpose, usage instructions, known issues, and contact information for support or collaboration.

Codebooks

- Define the variables and their units
- Explain the formats for dates, time, geographic coordinates
- Define any coded values and missing values
- Allows others outside of your research group to understand the data

README Files

- Title of Dataset
- Authors
- Contact information
- Date of data collection
- Licenses/restrictions placed on the data
- Links to publications that cite or use the data
- Recommended citation for the data
- Structure and organization of the data files
- List of software (with version numbers) and instruments

Metadata

- Data about data!
- Descriptions that help you find and understand data
- Different fields/disciplines use different metadata standards

Creator Gifford, Lauren Nacu-Schmidt, Ami Osborne-Gowey, Jeremiah Boykoff, Max **Date Issued** 2023-04 **Academic Affiliation** Cooperative Institute for Research in Environmental Sciences **Last Modified** 2023-05-02 Resource Type Data Set **Rights Statement** In Copyright 🖸 DOI ttps://doi.org/10.25810/c862-0e81.60 Language English [eng] License Creative Commons BY Attribution 4.0 International

File Names & Structures

"FINAL"doc

FINAL rev. 2 doc

FINAL_rev.6.COMMENTS.doc

FINAL_rev.8.comments5. CORRECTIONS. doc

FINAL_rev.18.comments7. corrections9.MORE.30.doc

FINAL_rev.22.comments49. corrections 10. #@\$%WHYDID ICOMETOGRADSCHOOL?????.doc

PHD Comics: NotFinal.Doc. Jorge Cham, 2012. https://phdcomics.com/ comics.php?f=1531

> xkcd: Documents. Randall Munroe. https://xkcd.com/1459/

PROTIP: NEVER LOOK IN SOMEONE ELSE'S DOCUMENTS FOLDER.

File Naming Best Practices

- Be consistent
 - Do: Use the same format for all files
 - Don't: Keep changing file names
- Be descriptive
 - Do: Avoid generic terms
 - Don't: Use "Final" in your file name
- Limit file name length
 - Do: Use (some) abbreviations
 - Don't: write-out-every-word-in-your-data-file.xlsx

Abbreviations

- Use meaningful abbreviations
- Document your decisions
 - Don't assume you'll remember what an abbreviation means
- Have group & individual identifiers
- Use version numbers

File Naming Best Practices

- Use CamelCase (not all systems preserve case)
 - Do: FileName-2023.pdf
 - Don't: use spaces in your file names.doc
- Use standardized numbers and dates
 - Do: Use leading zeros (001.png)
 - Don't: Have files named 9-12-11.csv
- Use the Latin alphabet
 - Don't: Use punctuation or special characters
 - and _ are okay!

Don't use spaces in your file names

Traffic_Crashes_-_Crashes.csv

 This also breaks certain software (or makes it harder to use)

Dates

- Don't use terms like "Quarter 1" or "spring"
- ISO 8601
- 2023-10-31 or 20231031 (YYYY-MM-DD)
- Remember that historically dates were not consistent
 - 1712-02-30 (February 30th, 1712) was a real date in Sweden

Use the Latin alphabet

- This sucks
- I'm sorry
- If your data features non-latin characters reach out to us and we can provide advice
- When you use them, make sure they're encoded properly

Don't use Latin numerals

- Don't use Latin numerals to name your files (they won't sort properly)
- You can use them in documentation (sometimes)

File Structuring

- Don't save everything to the desktop
- Don't let your structure get too deep

Project directory structure

Project_1

- methods
- 🔹 raw_data 🔷
 - 。 readme
- analysis
 - analysis_method_1
 - **.** 2017
 - . 2018
 - analysis_method_2
- scripts
- manuscript
 - 。 text
 - version_1
- readme and/or ELN link

Always keep your raw data!

(Raw data should be "read-only" if possible.)

File Archiving and Compression

- Usually called "zipping"
- Means collecting different files and directories into one file
- Many programs/methods of doing this
 - o .zip, .rar., .7z, .tar, .gz, etc.
- Done to minimize size of files (compression)
- Done to collect many files and directories into one file (archiving)
- Makes it easier to share many files

File Archiving and Compression

- Consider how the files will look once they're extracted (unzipped)
- Create a directory structure that will make it easy for people to understand and use your files
- Ensure all file paths will allow associated code to work

MacOS

- __MACOSX, .DS_Store, & ._ files are created automatically in MacOS
- They're invisible on Mac, but visible on Windows and Linux systems
- They will be included in .zip files

Name	Status	Date modified	Туре	Size	
MACOSX	\odot	2023-12-11 2:42 PM	File folder		
.DS_Store	\ominus	2023-12-11 2:42 PM	DS_STORE File	7 K	(B

This .zip file contained over 500,000 ._ files

1 KB

File Formats & Units of Measurement

File Formats

- Non-proprietary/Open
 - Can still be used even if original software is inaccessible
 - e.g. Use CSV files instead of .vc
- Unencrypted
- Uncompressed/lossless

File Formats

- Use the default file extension
 - Do: Save Excel files as .xlsx
 - Don't: Save Excel files as .spreadsheet
- Yes, I have seen people use non-standard file extensions

Units of Measurement

- Be consistent
- Use standardized measurements
- Don't keep changing between them
- Ensure everyone is using the same system
- Define them in your documentation

не	ignt
	3
	6
	1
	4
	6
	7
	4
9.	10
	12
	1
	12
	2
	3

Learn from the Mars Climate Orbiter

- Spacecraft that was probably destroyed in the Martian atmosphere
- The failure was due to a measurement mismatch between SI units (metric) and US customary units causing numbers to be incorrect by a factor of 4.45

Data Management Plans & Data Management and **Sharing Plans**

What is a DMP/DMSP?

- A framework for how you'll manage your data
- Describe your plans for collecting, organizing, storing, and sharing your data
- About two pages long

When should you make a DMP?

- When you have to for grant requirements
 - Different grants have different requirements
- When you don't have to, but want to, keep track of your data

Two types of DMPs

- The "final" version you'll submit with a grant proposal
- The "living" version that you'll continue to update as your research project progresses

What goes in a DMP?

- Types of data generated in this project
- Estimated size of data
- Software and file formats that will be used
- Where data will be stored, who can access it, and any security considerations
- Any privacy, legal, or ethical constraints
- Metadata standards
- How the data will be preserved/shared
- How the data can be reused
- A description of roles and responsibilities

DMPTool

DMPTool

- Has pre-formatted DMP templates from various funding agencies
- Walks you through the process of completing the DMP

DMPTool Activity

- Go to https://dmptool.org/
- When signing in, indicate that you're from CU Boulder
- Select a DMP Template relevant for your field (if you're having trouble choosing, pick the generic NSF template)
- Look through the prompts
- Attempt to answer the prompts in the context of your proposed project

DMPTool Activity

- Were any of the prompts challenging or confusing?
- Is there anything you would like clarification on?
- We're happy to read drafts and provide feedback on your draft DMPs, so please send them our way!

Other Useful Tools

Data Management Tools

- Open Science Framework
 - One-stop shop for project management
- Open Refine
 - Clean data
- File Renamers (various)
 - Rename files so they're consistent
 - You can also batch rename files in the command line
- Zotero
 - Reference management software

Consultations

How CRDDS can assist with Data Management

- One-on-one or small group consults
- Review draft DMPs and README files
- Help navigate data policies
- Find data repositories
- Advice on file formats, etc.
- Email us: crdds@colorado.edu

Acknowledgements

 Slides adapted from previous presentations by Matthew Murray (CU Boulder)