
Working with Data
Data Management and Analysis

Adapted from Data Carpentry's material:
https://datacarpentry.org/python-ecology-lesson/02-starting-with-data.html

https://datacarpentry.org/python-ecology-lesson/02-starting-with-data.html

About the Data

● The data used in the following lessons are observations of a small mammal community in
southern Arizona.

● Running for almost 40 years, part of this project is looking at the effects of rodents and
ants on the plant community.

● The rodents are sampled on a series of 24 plots, with different experimental
manipulations controlling which rodents are allowed to access which plots.

● This is a real dataset that has been used in over 100 publications.

● The data is in 3 CSV files that can been linked together.
● We won't be covering the process of converted these data from a spreadsheet.
● It's important to note that in order to programmatically work with data, it should be

organized and follow a predictable structure.

Exercise: Launch Spyder Check for Pandas library

Type the following into
the console:
pip install pandas

Recap: Research Project: Best Practices

● Create a project folder to work from
○ Add README to this folder

● Use folders to organize files in project folder
○ data/

■ use additional folders for raw and clean data
○ data_output/

■ to export processed results
○ documents/

■ outlines, drafts, other text
○ scripts/

my_project

data

scripts

README

Exercise: Download the Data

● Go to:
https://figshare.com/ndownloa
der/articles/1314459/versions/
10

● Unzip the file
● Move all downloaded data into

'data' folder

https://figshare.com/ndownloader/articles/1314459/versions/10
https://figshare.com/ndownloader/articles/1314459/versions/10
https://figshare.com/ndownloader/articles/1314459/versions/10

Set Working Directory in Spyder

Loading Data

● Start with
import pandas as pd

Note: Python doesn’t load all of the libraries available to it by default.
Use syntax import libraryName
A nickname to shorten the command can be given using as nickname

● Then
Note that pd.read_csv is used because we used import pandas as pd

pd.read_csv("../data/surveys.csv")

Note: The directory where your python code executes is important when accessing files.
The above example uses a relative path, meaning the script is looking from the current directory.
An absolute path would start with the drive letter (e.g C:/) on Windows or a '/' in Unix

Pandas and Python Data Types

Pandas Type Python Type Description

object string Will be assigned to your column if

column has mixed types (numbers and

strings).

int64 int Numeric characters

float64 float Numeric characters with decimals

datetime64, timedelta[ns] N/A Values meant to hold time data. Useful

for time series experiments.

Exercise: Checking Pandas Data Type
● Check data type:

○ import pandas as pd # Import package and name it as pd
○ surveys_df = pd.read_csv("../data/surveys.csv") # load the dataframe
○ type(surveys_df)
○ surveys_df.dtypes
○ surveys_df['sex'].dtype
○ surveys_df['record_id'].dtype

● Convert data type
○ surveys_df['record_id'] = surveys_df['record_id'].astype('float64')
○ surveys_df['record_id'].dtype
○ surveys_df['plot_id'].dtype
○ surveys_df.plot_id.astype("float")
○ surveys_df['plot_id'].dtype

Exercise: Export to CSV
● Remove rows that contain missing data:

○ surveys_df
○ df_na = surveys_df.dropna()
○ df_na
○ df_na.to_csv('../data/surveys_complete.csv', index= False)

Exercise: Working with Data
Store data in variable surveys_df

import pandas as pd
surveys_df = pd.read_csv("data/surveys.csv")

Determining object type and method responses

type(surveys_df)

surveys_df.head() # The head() method displays the first several lines of a file.

surveys_df.columns # Look at the column names

surveys_df.shape # Look at the number of rows and columns

Dataframes explained

● Rows = observations
● Cols = variables

○ All values in a column must be the same data type
● Data must be “rectangular” i.e. same number of rows/cols

Statistics From Data

surveys_df.columns # Look at the column names

pd.unique(surveys_df['species_id']) # get unique values from a column

Describe - to get all the stats
surveys_df['weight'].describe()

Or call each specifically
surveys_df['weight'].min() or ...max() or ...mean() or ...std() or ...count()

Groupby

● Summarize by one or more variables
● Creates a new dataframe

Group data by sex
grouped_data = surveys_df.groupby('sex')

Exercise: Summary Data

1. How many recorded individuals are female F and how many are male M?
2. What happens when you group by two columns using the following syntax and then

calculate mean values?
○ grouped_data2 = surveys_df.groupby(['plot_id', 'sex'])

○ grouped_data2.mean()

3. Summarize weight values for each site in your data.

HINT: you can use the following syntax to only create summary statistics for one column in
your data. by_site['weight'].describe()

Creating Summary Counts in Pandas

Count the number of samples by species

species_counts = surveys_df.groupby('species_id')['record_id'].count()

species_counts

also count just the rows that have the species “DO”

surveys_df.groupby('species_id')['record_id'].count()['DO']

Basic Plots with Pandas

#look at how many animals were captured in each site:

total_count =

surveys_df.groupby('plot_id')['record_id'].nunique()

Let's plot it!

total_count.plot(kind='bar')

Exercise: Plotting with Pandas

1. Create a plot of average weight across all species per site.
2. Create a plot of total males versus total females for the entire dataset.

For more information on pandas plots, see pandas’ documentation page on visualization.

http://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html#basic-plotting-plot

Indexing, Slicing and Subsetting
Data Management and Analysis

Adapted from Data Carpentry's material:
https://datacarpentry.org/python-ecology-lesson/03-index-slice-subset

https://datacarpentry.org/python-ecology-lesson/03-index-slice-subset

Data Selection

import pandas as pd
surveys_df = pd.read_csv("../data/surveys.csv")

Method 1: select a 'subset' of the data using the column name
surveys_df['species_id']

Method 2: use the column name as an 'attribute'; gives the same output
surveys_df.species_id

Creates an object, surveys_species, that only contains the `species_id`
column
surveys_species = surveys_df['species_id']

Select the species and plot columns from the DataFrame
surveys_df[['species_id', 'plot_id']]

Extracting Range based Subsets: Slicing

Create a list of numbers:
a = [1, 2, 3, 4, 5]

Exercises: a[0], a[5], a[len(a)]

Slicing Subsets of Rows

'[]' operator selects a set of rows and/or columns from a DataFrame

● data[start:stop], start included, stops one step beyond end

Select rows 0, 1, 2 (row 3 is not selected)
surveys_df[0:3]

Select the first 5 rows (rows 0, 1, 2, 3, 4)
surveys_df[:5]

Select the last element in the list

(the slice starts at the last element, and ends at the end of the list)
surveys_df[-1:]

Copying Objects vs Referencing Objects

Using the 'copy() method
true_copy_surveys_df = surveys_df.copy()

Using the '=' operator
ref_surveys_df = surveys_df

Assign the value `0` to the first three rows of data in the DataFrame
ref_surveys_df[0:3] = 0

ref_surveys_df was created using the '=' operator
ref_surveys_df.head()

surveys_df is the original dataframe
surveys_df.head()

Reset surveys_df
surveys_df = pd.read_csv("../data/surveys.csv")

Slicing Subsets of Rows and Columns

● loc is primarily label based indexing
○ Integers may be used but they are interpreted as a label

#data.loc[[list (not range),[column ids] or ‘:’]

Select all columns for rows of index values 0 and 10
surveys_df.loc[[0, 10], :]

● iloc is primarily integer based indexing

data.iloc[row slicing, column slicing]
surveys_df.iloc[0:3, 1:4]

Exercise: Ranges Experimentation

What happens when you execute:

surveys_df[0:1]
surveys_df[:4]
surveys_df[:-1]

surveys_df.iloc[0:4, 1:4]
surveys_df.loc[0:4, 1:4]

Subsetting Data using Criteria
#select all rows that have a year value of 2002
surveys_df[surveys_df.year == 2002]

#select all rows that do not have a year value of 2002
surveys_df[surveys_df.year != 2002]

using and '&'
surveys_df[(surveys_df.year >= 1980) & (surveys_df.year <= 1985)]

use the isin command in Python to query a DataFrame based upon a list of
values

surveys_df[surveys_df['species_id'].isin(['NL'])]

#'~' symbol in Python can be used to return the OPPOSITE of the selection that
you specify

Exercise: Queries

1. Select a subset of rows in the surveys_df DataFrame that contain data from the
year 1999 and that contain weight values less than or equal to 8. How many rows did
you end up with?

2. Create a query that finds all rows with a weight value > or equal to 0.
3. Use the isin function to find all plots that contain 'NL' and 'DM' species in the

“surveys” DataFrame. How many records contain these values?
4. Write a query that selects all rows with sex NOT equal to ‘M’ or ‘F’ in the “surveys”

data.
● Note: The ~ symbol in Python can be used to return the OPPOSITE of the selection that

you specify in Python. It is equivalent to is not in.

Masks to identify a specific condition

Masks

● Used to locate a subset of values
● Can either exist or not
● For example, NaN, or “Not a Number” values
● Creates an output object with same shape as the original object,

○ but with a True or False value for each index location.

pd.isnull(surveys_df)

To select just the rows with NaN values, we can use the 'any()' method
surveys_df[pd.isnull(surveys_df). any(axis=1)]

Exercise

1. What does this do?

empty_weights = surveys_df[pd.isnull(surveys_df['weight'])]['weight']

print(empty_weights)
2. Create a new DataFrame that only contains observations with sex values that are not

female or male. Assign each sex value in the new DataFrame to the new value of ‘x’.
Determine the number of null values in the subset.

3. Create a new DataFrame that contains only observations that are of sex male or female
and where weight values are greater than 0.

Bonus:
Create a stacked bar plot of average weight by plot with male vs female values stacked for
each plot

5 Minute Post Workshop Evaluation

https://forms.office.com/r/E1Yy7RNv3y

https://forms.office.com/r/E1Yy7RNv3y

