
Introduction to Python
Data Management and Analysis

Adapted from Data Carpentry's material:
https://datacarpentry.org/python-ecology-lesson/01-short-introduction-to-Python.html

https://datacarpentry.org/python-ecology-lesson/01-short-introduction-to-Python.html

• Be present, open, honest, & authentic
• Speak from personal experience: use “I” statements to share

thoughts & feelings
• Listen actively & respectfully
• Be open to new and different perspectives
• Respect and maintain confidentiality

Community Agreements

Virtual Expectations

• Please use mute if not speaking

• If you need to turn off video, that is fine, please

participate

• Speak up, Raise hand and use chat functions

• In small groups, create and maintain expectations

What is Programming and Coding?

Programming: Writing “programs” that a computer can execute to produce some
result

Multi-step

1. Identifying the aspects of the real-world problem that can be solved
computationally

2. Choose computational solution
3. Implementing the solution in a specific computer language (Coding)
4. Testing, validating, and adjusting implemented solution

What is Python?

● General purpose programming language
● Supports rapid development of applications including data analysis and analytics
● Name refers to both language and the tool that executes the scripts
● Has built-in standard libraries and lots of community generated ones

Advantages:

● Free
● Open-source
● Available on all major platforms (macOS, Linux, Windows)
● Supported by Python Software Foundation
● Allows multiple programming paradigms
● Has large community
● Rich ecosystem of third-party packages

Why Choose Python for Data Analysis

● Easiest to learn
● Reproducibility

○ Free and Open-Source Software (FOSS)
○ Cross-Platform

● Versatility
○ Used in many applications and powering processes at Google, NASA, Netflix

● Interdisciplinary and extensible
● Active and welcoming community
● Well documented

https://stackoverflow.com/questions/2560310/heavy-usage-of-python-at-google/2561008#2561008
https://www.python.org/about/success/usa/
https://netflixtechblog.com/python-at-netflix-86b6028b3b3e

Research Project: Best Practices

● Create a project folder to work from
○ Add README to this folder

● Use folders to organize files in project folder
○ data/

■ use additional folders for raw and clean data
○ data_output/

■ to export processed results
○ documents/

■ outlines, drafts, other text
○ scripts/

my_project

data

scripts

README

Exercise: Create an Organized Project Folder

my_project

data

scripts

README

projects● Start by creating a project folder
○ Ideally located in 'home' folder

● Name the project something descriptive
● Create a README file
● Create data and scripts folders

Data File Naming

● Unique
● No special characters *? \ / : # % ~ { }”’
● Descriptive name
● Lowercase with underscores, or camelCase

● No spaces
● Consistent, predictable, pattern
● Naturally ordered

● For versioning use suffix _v01
● Time-series data

● Use UTC time YYYY-MM-DD
● E.g some_data_2021-09-13.csv

● Best to break-up data files into chunks or use a database
● Consider stand alone names for shared data

File Naming Conventions: simple rules save time and effort ref:
https://www.abdn.ac.uk/staffnet/documents/policy-zone-information-policies
/File%20Naming%20Conventions%20July%202017.pdf

Examples
some_composite_layer_buffer_30_meters.shp
Vs. comp_lyr_buff_30_m.shp
Vs. CompLyrBuff30M.shp

Consider acronyms
BLM_CO_MCA_Density_20181212.shp

Careful with capitalization and pluralization

https://www.abdn.ac.uk/staffnet/documents/policy-zone-information-policies/File%20Naming%20Conventions%20July%202017.pdf
https://www.abdn.ac.uk/staffnet/documents/policy-zone-information-policies/File%20Naming%20Conventions%20July%202017.pdf

1. Visit https://www.anaconda.com/products/individual in your web browser.
2. Download installer
3. Run installer
4. Open Anaconda

Exercise: Installing Python using Anaconda

https://www.anaconda.com/products/individual

Knowing Your Way Around Anaconda

Lots of ways to work

● IPython console
● Jupyter Notebook
● Spyder IDE

Package Management:

● Comes with a package
manager called conda

● Alternatively use pip
○ Works great with

virtual environments

Jupyter Notebook

Code cells and output structure

Use Shift+Return to execute cell

In[#] indicates execution count

Create new cells as needed

All commands and output saved to
notebook, great for sharing
analysis via GitHub

JupyterLab has all the same
features and then some

Spyder

Resembles Matlab

Helpful for writing
scripts (i.e .py files)
and testing code
chunks

Other options include

● PyCharm
(heavier)

● VS Code (very
popular)

1 2

3

Exercise: Using the Spyder Console

1. Within the Spyder console, type the below text in bold followed by the 'Enter' key:
○ text = "foo" # An example of a string
○ number = 42 # An example of an integer
○ pi_value = 3.1415 # An example of a float

2. 'print' each created variable to screen
○ Simply type the variable in the command line and press the enter key

Note a '#' character starts a comment, useful in documenting code

Every variable in python is an object with a type

3. Determine the type of each with the type() function
○ Enter type(text)

■ Do the same for each created variable to reveal its type

Exercise: Checking a Python Data Type

● Using the function type():
○ type (10) # An example of a int
○ type(10.0) # An example of a float
○ type(‘10.0’) # An example of str

Note a '# 'character starts a comment, useful in documenting code

● See how different data types interact with each other:
○ type(10+10)
○ type(10+10.0)
○ type(10*10.0)
○ type(10+‘10.0’)
○ type(‘10.0’+‘10’)
○ print(‘10.0’+‘10’）

Common Object Types

● Integers: 1,2,3, 100, 0, -1, -2, -3, -100
● Floats: -1.234, 1.234, 3.1415, 0.000000001,
● Strings: 'Hello World', "That's Correct"
● Boolean: True, False
● None and Null: No value at all
● Lists: [1,2,3]
● Tuples: (1,2,3) immutable
● Sets: {1,2,3} each item must be unique
● Dictionaries: {'Sun': 'Orange', 'Grapes': 'purple', 'red': rgb(255, 0, 0)}
● DataFrames: tabular data structure

Operators

● Symbols in python to perform a mathematical or logical operations

Type Symbol
Arithmetic + - * /
Assignment = (right-side

assigned to left)
Relational > < == != >= <=
Logical and or in
Extraction variable[]

Exercise: Experiment with Operators

● Within the Spyder console type bold text below and press the enter key:
○ 6 * 7 # Multiplication
○ 2 ** 16 # Power
○ 13 % 5 # Modulo
○ 3 > 4
○ True and True
○ True or False
○ True == False

● What questions do you have on the output of each?

Sequences: Lists

Lists

● Data structure to hold ordered sequence of elements
● Each element can be accessed by an index.

○ Note that python indexes start with 0 instead of 1, e.g.:
■ numbers = [1, 2, 3]
■ numbers[0]

■ output: 1

● for loop able to access elements in list one at a time:
○ for num in numbers:

○ print(num)

Sequences: Lists continued

Indentation critical in Python.

for num in numbers:

 print(num)

● Note that the second line in the previous example is indented
○ python’s way of marking a block of code
○ Used to nest lines associated with those above

● Add elements to list using the append method, denoted by '.' and method
name followed by '()'
○ numbers.append(4)

○ print(numbers)

Indexed looping with Enumerate

When you want to know the index and value of what you're iterating on

values = ['foo','bar', 'baz']

for idx, val in enumerate(values):

 print(str(idx)+"="+val)

Sequences: Tuples

Tuple

● Like a list but uses '()' instead of '[]'
● Can not be changed once created (“immutable”)

○ # Tuples use parentheses

○ a_tuple = (1, 2, 3)

○ another_tuple = ('blue', 'green', 'red')

Dictionaries

● Container for pairs of objects - keys and values
○ translation = {'one': 'first', 'two': 'second'}

○ print(translation['one'])

○ output: 'first'

● Two ways to access dictionary values with for loops:
○ items method

■ for key, value in translation.items():

■ print(key, '->', value)

○ keys method
■ for key in translation.keys():

■ print(key, '->', translation[key])

Exercise: Experiment with object types

● Create one of the following:
○ list
○ tuple
○ dictionary

● Print the first value from each
● Bonus:

○ Print the last value in each
○ Loop through each and print all values

Functions and Help

Function

● A block of code only run when called
● Declared with the def keyword, e.g.:

function that takes two arguments and returns the first plus the
second
def add_function(a, b):

result = a + b
return result

 z = add_function(5, 10)
print(z)

Help

● To find out what methods are available for an object use the built-in help command
○ help(object)

Reserved Words in Python

Boolean values True and False,

Operators and, or, and not

list, number, etc

Given python's flexibility, reserved words can be overwritten e.g. list = ['a','b','c']

● Potentially causing problems

Full list of reserved words for Python version 3:
https://docs.python.org/3/reference/lexical_analysis.html#identifiers.

https://docs.python.org/3/reference/lexical_analysis.html#identifiers

5 Minute Post Workshop Evaluation

https://forms.office.com/r/E1Yy7RNv3y

https://forms.office.com/r/E1Yy7RNv3y

If then Else

Test a single condition

a = 5

if a == 5:
print('A equals 5')

If the outcome of the logical operator is not what we tested for we make use the construct of if-then-else

a = 6

if a == 5:
print('A equals 5')

else:

print('A is not equal to 5')

use 'elif' after 'if' when you'd like to test for more conditions

Nested Statements and Loops

a = 'foo'

b = 'bar'

if a == 'foo':

 if b == 'bar':

 print('OK this is cool!')

 else:

 print('All foo no bar')

And - Or - Not

We can make our conditions more powerful by using the keywords and, or, or not

a = 7

if a > 5 and a < 10:
print('A is between 5 and 10')

a = 15
b = 5
c = 20

if a > b or a < c:
print(f'A is between {b} and {c}')

a = 5
b = 10

if not a > b:
print('A is not greater than B)

Shorthanded methods - making things more Pythonic

If you only have one condition to test you 'could' put it all
on one line.

a = 5

if a != 10: print('A is not 10')

a = 5
b = 10

print('A') if not a < b else print('B')

Nested, breaking and shorthanding loops

for i in range(4):
 print(f'\n')
 for j in range(3):

print(f'i = {i} j = {j}')

states = ['Colorado', 'Florida', 'Hawaii', 'California', 'Alaska']

for state in states:

 if state == 'Colorado':

 break

 print(state)

mylist = [1, 'One', 'Two', 2, 'three', 3.14]

[print(x) for x in mylist]

